HYDAD INTERNATIONAL

Level
Sensors

ELECTRONIC LEVEL SENSORS

In industry, level sensors are used for the most diverse tasks. In the main, sensors which are based on capacitive, magnetostrictive or ultrasonic measurement are used.
HYDAC ELECTRONIC has level sensors for each of these measurement principles in its product range.

Electronic level switches for general applications:
ENS 3000 (capacitive)
ENS 3000 IO-Link (capacitive)
HNS 3000 (magnetostrictive)
HNS 526 (based on ultrasound)
Electronic level measuring transmitter for general applications:

HNT 1000 (magnetostrictive)

Electronic Level Switch ENS 3000

Description:

The ENS 3000 is an electronic level switch with integrated display. The instrument has 1 , 2 or 4 switching outputs and an analog output signal is available as an option.
In addition to the standard minimum and maximum switching signals, with the 4 switching output version it is possible to set additional warning signals to prevent problems such as tank overflow or aeration of the pump. The ENS 3000 can be used for oil as well as water. The fluid type can be selected for specific applications via the menu.
The main applications of the ENS 3000 are primarily in hydraulics, e.g. for fluid level monitoring of a tank.
The ENS 3000 is available in standard probe lengths of 9.80 ", 16.20", 20.50" and 28.70".
The instrument is also available with or without an integrated temperature sensor.

Special features:

- 1, 2 or 4 independent PNP transistor switching outputs
- Selectable for use with oil or water
- User-selectable switch outputs based on the measured value
- Switching and switch-back points can be adjusted independently
- Selectable analog output (optional)
- 4-digit display
- Simple to operate due to menu-based key operation

Technical data:

Setting options:

All settings available on the ENS 3000 are combined in 2 easy-to-navigate menus. To prevent unauthorized adjustment of the instrument, a programming lock can be set.

Setting ranges of the

 switching points and switch-back hysteresis:Fluid level switching point function

Probe length in inches	Meas. range in inches	Switching point in inches	Hysteresis
9.80	6.70	$0.10 . .6 .70$	0.05 in inches 6.60
16.20	11.40	$0.20 . .11 .40$	0.05 .. 11.25
20.50	15.35	$0.25 . .15 .35$	$0.05 . .15 .15$
28.70	23.20	$0.35 . .23 .20$	$0.15 . .22 .85$

The increment for all units is 0.05 inch.
Fluid level window function

Probe length in inches	Lower switch value in inches	Upper switch value in inches
9.80	0.10 .. 6.55	0.20 .. 6.60
16.20	0.20 .. 11.15	0.30 .. 11.25
20.50	0.25 .. 15.05	0.35 .. 15.15
28.70	0.40 .. 22.80	0.60 .. 23.00

The increment for all units is 0.05 inch.
Fluid level offset function

Probe length in inches	Meas. range in inches	Offset
9.8	6.7	$0 . .26 .8$
16.2	11.4	$0 . .45 .6$
20.5	15.35	$0 . .61 .4$
28.7	23.2	$0 . .69 .6$

The increment for all units is 0.05 inch.
Temperature switching point function

Unit	Meas. range	Switching point	Hysteresis
${ }^{\circ} \mathrm{F}$	$-13 . .+212$	$-9 . .+212$	$2 . .222$

The increment for all units is $1^{\circ} \mathrm{F}$.

Temperature window function

Unit	Lower switch value	Upper switch value
${ }^{\circ} \mathrm{F}$	$-10 . .207$	$-7 . .209$

The increment for all units is $1^{\circ} \mathrm{F}$.

Additional functions:

- Switching mode of the switching outputs adjustable (switching point function or window function)
- Switching direction of the switching outputs adjustable (N/C or N/O function)
- Switching outputs can be assigned to fluid level or temperature, as required
- Switch-on and switch-off delay adjustable from 0.00 .. 9999 seconds
- Display can be adjusted (actual fluid level, actual temperature, peak values, switching point 1, 2, 3, 4 or display off)
- Analog output can be assigned to fluid level or temperature as required (depending on model)

Pin connections:

M12×1, 4 pole

Pin	ENS	ENS
	$3 \times 16-2$	$3 \times 16-3$
1	$+U_{B}$	$+U_{B}$
2	SP 2	Analog
3	0 V	0 V
4	SP 1	SP 1

M12x1, 5 pole

Pin ENS
3X18-5

1	$+\mathrm{U}_{\mathrm{B}}$
2	Analog
3	0 V
4	SP 1
5	SP 2

M12x1, 8 pole

Pin	ENS
	$3 \times 1 P-8$
1	$+U_{B}$
2	SP 2
3	0 V
4	SP 1
5	SP 3
6	SP 4
7	Analog luid level
8	Analog temperature

* All ranges given in the table are adjustable by the increments shown.

Model code:

ENS $3 \mathrm{X} 1 \mathrm{X}-\mathrm{X}-\underline{\mathrm{XXXX}}-\underline{000}-\underline{K}$

Temperature sensor

1 = With temperature sensor
2 = Without temperature sensor
Mechanical connection
$1=22 \mathrm{~mm}$ collar
to fit cutting ring coupling G22L
Electrical connection

pole

 only possible on output models "2" and "3"8 = Male M12×1, 5 pole only possible on output model " 5 "
$\mathrm{P}=$ Male M12×1, 8 pole only possible on output model "8"

Output

2 = 2 switching outputs only in conjunction with electrical connection type "6"
3 = 1 switching output and 1 analog output only in conjunction with electrical connection type " 6 "
$5=2$ switching outputs and 1 analog output only in conjunction with electrical connection type " 8 "
$8=4$ switching outputs and 2 analog outputs only in conjunction with electrical connection type "P"
Probe length (physical) in inches
$0100=9.80^{\prime \prime}$
$0162=16.2^{\prime \prime}$
$0205=20.5^{\prime \prime}$
$0287=28.7^{\prime \prime}$
Modification number
$400=$ Standard in inch
Probe material

$\mathrm{K}=$ Ceramic

Accessories:

Appropriate accessories, such as electrical connectors, splash guards,
etc. can be found in the Accessories brochure.

Dimensions:

| Designation | [in] | [in] | [in] | [in] |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inactive zone
 (lower end) | approx.
 0.87 | approx.
 1.10 | approx.
 1.34 | approx.
 1.97 |
| Measuring
 range | 6.70 | 11.42 | 15.35 | 23.20 |
| Probe length | 9.80 | 16.20 | 20.5 | 28.7 |
| Total length | 13.38 | 19.68 | 24.01 | 32.28 |
| Inactive zone
 (upper end) | approx.
 1.30 | approx.
 2.64 | approx.
 2.79 | approx.
 2.56 |

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

Description:

The ENS 3000 with IO-Link communication interface is an electronic level switch with integrated display. The instrument has a switching output and additional output that can be configured as switching or analog ($4 . .20 \mathrm{~mA}$ or 0 .. 10 V). The ENS 3000 can be used not only for oil but also for water and is available with or without temperature sensor.
Compared with the standard version, the IO-Link interface enables bidirectional communication between the device and the control. Parameterization and cyclical transmission of process and service data is therefore possible.
The level switch series ENS 3000 with communication interface IO-Link according to specification V1.1 has been specially designed to connect sensors in automation systems. Typical fields of application are machine tools, handling and assembly automation, intralogistics or the packaging industry.

Special features:

- IO-Link interface
- 1 PNP transistor output
- Additional signal output, can be configured as PNP transistor switching output or analog output
- Selectable for use with oil or water
- 4-digit display
- Display rotates in two axes for optimal alignment

Technical data:

Input data	
Sensor type	Capacitive level sensor
Probe length	9.80"; 16.20"; 20.50"; 28.70"
Measuring range	6.70"; 11.4"; 15.35"; 23.2"
Max. speed of change in the fluid level	1.57; 2.36; 3.14; 3.94 inch/s
Repeatability ${ }^{1)}$	$\leq \pm 2 \%$ FS
Switching point accuracy	$\leq \pm 2 \%$ FS
Temperature (optional)	
Sensor type	Semi-conductor sensor
Measuring range	$-13 . .+212{ }^{\circ} \mathrm{F}$
Accuracy	$\pm 3.0{ }^{\circ} \mathrm{F}$
Reaction time (t_{90})	180 s
Output data	
Output signals	Output 1: PNP transistor switching output Output 2: can be configured as PNP transistor switching output or analog output
Analog output	
Signal	selectable: $4 . .20 \mathrm{~mA}$ load resistance max. 500Ω $0 . .10 \mathrm{~V}$ load resist. min. $1 \mathrm{k} \Omega$ corresponds to measuring range selected
Switch outputs	
Type	PNP transistor switching output
Assignment	On version with temperature measurement user-selectable temperature or fluid level
Switching current	max. 250 mA per output
Switching cycles	>100 million
Parameterization	Via IO-Link interface, with HYDAC programming device HPG 3000 or push buttons on the ENS 3000
Environmental conditions	
Compensated temperature range	$32 . .+140^{\circ} \mathrm{F}$
Operating temperature range	$32 . .+140^{\circ} \mathrm{F}$
Storage temperature range	$-40 . .+176{ }^{\circ} \mathrm{F}$
Fluid temperature range	$32 . .+140^{\circ} \mathrm{F}$
(6 - mark	EN 61000-6-1 / 2 / 3 / 4
Vibration resistance according to DIN EN 60068-2-6 (0 .. 500 Hz)	$\leq 5 \mathrm{~g}$
Shock resistance according to DIN EN 60068-2-29 (11 ms)	$\leq 25 \mathrm{~g}$
Protection class to IEC 60529	IP 67
Other data	
Max. tank pressure	7.25 psi (short-term $43.5 \mathrm{psi}, \mathrm{t}<1 \mathrm{~min}$)
Supply voltage	9 .. 35 V DC without analog output 18 .. 35 V DC with analog output
Current consumption	$\leq 0.590 \mathrm{~A}$ with active switching outputs $\leq 90 \mathrm{~mA}$ with inactive switching outputs $\leq 110 \mathrm{~mA}$ with inactive switching output and analog output
Residual ripple of supply voltage	$\leq 5 \%$
Fluids ${ }^{2)}$	Hydraulic oils (mineral based), synth. oils, fluids containing water
Parts in contact with medium	Ceramic
Display	4-digit, LED, 7 -segment, red, height of digits 7 mm
Weight	$180 . .300 \mathrm{~g}$, dependent on the probe length
$\begin{array}{ll}\text { Note: } & \text { Reverse polarity protection of the supply voltage, excess voltage, override and short circuit protection are } \\ \\ \text { provided. } \\ & \text { FS (Full Scale) = relative to complete measuring range } \\ \text { Specified for calm, non-turbulent fluid }\end{array}$	

Setting options:

All terms and symbols used for setting the ENS 3000 as well as the menu structure comply with the specifications in the VDMA Standard for level switches.

Setting ranges for the switch outputs:

Measuring range/ probe length in inches	Lower limit of $\mathrm{RP} / \mathrm{FL}$ in inches	Upper limit of $\mathrm{SP} / \mathrm{FH}$
$6.70 / 9.80$	$0.05 / 0.10$	$6.70 / 6.60$
$11.40 / 16.20$	$0.10 / 0.20$	$11.40 / 11.25$
$15.35 / 20.50$	$0.15 / 0.25$	$15.35 / 15.15$
$23.20 / 28.70$	$0.25 / 0.35$	$23.20 / 22.85$
Measuring range	Min. difference betw. RP \& SP and FL \& FH in inches	Increment*
in inches	$0.05 / 0.05$	in inches
$6.70 / 9.80$	0.05	
$11.40 / 16.20$	$0.10 / 0.10$	0.05
$15.35 / 20.50$	$0.10 / 0.15$	0.05
$23.20 / 28.70$	$0.15 / 0.25$	0.05

* All ranges given in the table
are adjustable by the increments
shown.
SP = switch point
RP = switch-back point
FL = level window lower value
FH = level window upper value

Additional functions:

- Switching mode of the switching outputs adjustable (switching point function or window function)
- Switching direction of the switching outputs adjustable (N/C or N/O function)
- Switching outputs can be assigned to the fluid level or temperature
- Switch-on and switch-off delay adjustable from 0.00 .. 99.99 seconds
- Optional analog output signal to 4 .. 20 mA or 0 .. 10 V
- Analog output can be assigned to fluid level or temperature as required (depending on version)

Pin connections:

IO-Link-specific data:

Baud rate	$38.4 \mathrm{kBaud}{ }^{*}$
Cycle time	2.5 ms
Process data width	16 Bit
Frame type	2.2
Specification	V1.1
* 隹	

* Connection with unshielded standard sensor line possible
up to a max. line length of 20 m .
Download the IO Device Description (IODD) from:
http://www.hydac.com/de-en/service/downloads-software-on-request/

Model code:

ENS 3 X 16 - F31-XXXX $-\underline{400-K}$
Temperature sensor
$1=$ With temperature sensor
2 = Without temperature sensor
Mechanical connection
1 = Collar Ø 22
Electrical connection
$6=$ Male M12x1, 4 pole (connector not supplied)
Output
L = IO-Link interface
Probe length, physical
$0100=9.80$
0162 = 16.2"
0205 = 20.5"
0287 = 28.7"
Modification number
$400=$ Standard in inch
Probe material

$\mathrm{K}=$ Ceramic

Accessories:

Appropriate accessories, such as electrical connectors, mechanical connection adaptors, splash guards, etc. can be found in the Accessories brochure.

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

HYDAC ELECTRONICS

90 Southland Dr. Bethlehem, PA 18017
Telephone +1 (610) 266-0100
E-mail: electronics@hydacusa.com
Website: www.hydacusa.com

Description:

The HNS 3000 is an electronic level switch with integrated display. The float-based sensor for highprecision analog monitoring of the fluid level has 1, 2 or 4 switching outputs and an analog output signal is available as an option.
In addition to the conventional minimum and maximum switching signal, with the 4 output version it is possible to set additional warning signals to prevent problems such as tank overflow or aeration of the pump.
The main applications of this HNS 3000 are primarily in hydraulics, e.g. for fluid level monitoring of a tank.
The sensor is available in probe lengths from 9.84 to 98.4 inches. The instrument is also available with or without temperature sensor.
Depending on the application, several different floats are available, e.g. stainless steel for aggressive media or plastic.

Special features:

- 1, 2 or 4 independent PNP transistor switching outputs
- User-selectable switch outputs based on the measured value
- Switching and switch-back points can be adjusted independently
- Selectable analog output available as an option
- 4-digit display
- Various types of float available

Electronic Level Switch HNS 3000

Technical data:

Input data	
Sensor type	Magnetostrictive
Measuring ranges	7.01"; 8.19"; 11.73"; 13.31"; 17.64"; 25.90"
Probe length ${ }^{1)}$	9.84"; 11.02"; 14.57"; 16.14"; 20.47"; 28.74"
Max. speed of change in fluid level	Optional
Repeatability ${ }^{2}$)	$\leq \pm 1 \%$ FS
Switching point accuracy	$\leq \pm 1 \%$ FS
Temperature (optional)	
Sensor type	Semi-conductor sensor
Measuring range	$-13 . .+212^{\circ} \mathrm{F}$
Accuracy	$\pm 3.0{ }^{\circ} \mathrm{F}$
Reaction time (t_{90})	<100 s
Output data	
Analog output (optional)	
With 1 or 2 SP selectable	4 .. 20 mA load resistance $\leq 500 \Omega$ 0 .. 10 V load resistance $\geq 1 \mathrm{k} \Omega$ corresponds to measurement range selected
With 4 SP (only with temperature sensor)	0 .. 10 V load resistance $\geq 1 \mathrm{k} \Omega$ corresponds to measurement range selected
Switch outputs	
Type	PNP transistor output programmable as N/O / N/C
Assignment	On version with temperature measurement user-selectable temperature or fluid level
Switching current	1 or 2 SP: max. 1.2 A per output 4 SP: max. 0.25 A per output
Switching cycles	> 100 million
Environmental conditions	
Max. tank pressure	43.5 psi (short-term 145 psi, t < 1 min)
Operating temperature range	$-40 . .+185^{\circ} \mathrm{F}$
Storage temperature range	$-40 . .+212^{\circ} \mathrm{F}$
Fluid temperature range	-40 .. $+248{ }^{\circ} \mathrm{F}$
C €-mark	EN 61000-6-1 / 2 / 3 / 4
Vibration resistance to DIN EN 60068-2-6	$\begin{aligned} & 7.5 \mathrm{~mm}(5 . .8 .2 \mathrm{~Hz}) \\ & 2.0 \mathrm{~g}(8.2 . .150 \mathrm{~Hz}) \end{aligned}$
Shock resistance to DIN EN 60068-2-27	20 g (11ms)
Protection class to IEC 60529	IP67
Other data	
Supply voltage (U_{B})	9 .. 35 V DC (without analog output) 18 .. 35 V DC (with analog output)
Current consumption (without output)	$\leq 150 \mathrm{~mA}$
Residual ripple of supply voltage	$\leq 250 \mathrm{mV}$
Fluids	Hydraulic oils, cooling lubricants
Parts in contact with medium	Stainless steel (1.4301 / 1.4571)
Float	PP (polypropylene); 0.6 kg/dm ${ }^{3}$
Display	4-digit, LED, 7-segment, red, height of digits 7 mm
Weight (dependent on the probe length)	$\sim 1000 \mathrm{~g}$
Note: Reverse polarity protection of the supply voltage, excess voltage, override and short circuit protection are provided. FS (Full Scale) = relative to the complete measuring range	
1) \quad Other probe lengths on request 2) \quad Specified for calm, non-turbulent	

Pin connections:

M12x1, 4 pole

Pin	HNS 3X26-2	HNS 3X26-3
1	$+\mathrm{U}_{\mathrm{B}}$	$+\mathrm{U}_{\mathrm{B}}$
2	SP 2	Analog
3	0 V	0 V
4	SP 1	SP 1

M12x1, 5 pole

Pin	HNS 3X28-5
1	$+\mathrm{U}_{\mathrm{B}}$
2	Analog
3	0 V
4	SP 1
5	SP 2

M12x1, 8 pole

Pin	HNS 3X2P-8
1	$+\mathrm{U}_{\mathrm{B}}$
2	SP 2
3	0 V
4	SP 1
5	SP 3
6	SP 4
7	Analog level
8	Analog temperature

Model code:

HNS $3 \underline{X} \underline{X} \underline{X}-\underline{X}-\underline{X X X X}-\underline{400}$

Temperature sensor

$1=$ With temperature sensor
2 = Without temperature sensor

Mechanical connection

2 = G3/4 A DIN 3852 (male)

Electrical connection

$6=$ Male M12x1, 4 pole only for output models " 2 " and " 3 "
8 = Male M12x1, 5 pole possible only for output model " 5 "
$\mathrm{P}=$ Male M12x1, 8 pole only for output model "8"

Output

2 = 2 switching outputs only in conjunction with electrical connection type "6"
3 = 1 switching output and 1 analog output only in conjunction with electrical connection type "6"
$5=2$ switching outputs and 1 analog output only in conjunction with electrical connection code type "8"
$8=4$ switching outputs and 2 analog outputs only in conjunction with electrical connection type "P"
Probe length (physical)
$0250=9.84 "$
$0280=11.02^{\prime \prime}$
$0370=14.57$
$0410=16.14$
$0520=20.47^{\prime \prime}$
$0730=28.74 "$

Modification number

400 = Standard in inch

Accessories:

Appropriate accessories, such as electrical connectors, splash guards, etc.
can be found in the Accessories brochure.

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

HYDAC ELECTRONICS

90 Southland Dr. Bethlehem, PA 18017
Telephone +1 (610) 266-0100
E-mail: electronics@hydacusa.com Website: www.hydacusa.com

Electronic
Level Switch
HNS 526

Description:

The level switch HNS 526 is a noncontact, highly compact sensor for fluid level measurement in stationary applications.
By definition, its functional principle (measurement of sound transmission time) means that it operates with an extremely high resolution and measurement rate.
The HNS 526 is available for measurement ranges up to 6400 mm (252") and is obtainable in different signal output variants (2 switching outputs;
1 switching output and 1 analog output, either 4 .. 20 mA or 0 .. 10 V).
The sensor can be adjusted simply and conveniently via two push-buttons and a self-explanatory menu structure according to VDMA.
The actual fluid level can be displayed in a 3-digit digital display either in absolute value or in percent (selectable); 2 three-color LEDs also indicate the operating status.

Special features:

- Non-contact distance measurement
- Measurement range up to 6400 mm
(252")
- Various signal output versions available
- Very high resolution and measurement rate
- Integrated temperature compensation
- 3-digit digital display to show
the actual distance
- 2 three-color LEDs to display
the operating statuscan be adjusted independently
- Switching and switch-back points Selectable analog output (optional) Only for use in depressurized applications
- Must be installed vertically to the fluid surface

Technical data:

 provided.

Setting options:

All the terms and symbols used for setting the HNS 526 as well as the menu structure comply with the specifications of the German Engineering Federation Standard (VDMA 24574-4) for level switches.
In order to prevent unauthorized adjustment of the device, a key-lock can be set.
Setting ranges of the switching points or switch-back points:
Switching point function distance and window function distance

Oper. scanning range	SP1, SP2, FH1, FH2 *	RP1, RP2, FL1, FL2*
280 mm $(11.02 \mathrm{inch})$	$2 . .32 \mathrm{~cm}$ $2 . .13 \mathrm{inch}$	$1 . .31 \mathrm{~cm}$ $1 . .12$ inch
480 mm	$2 . .59 \mathrm{~cm}$	$1 . .58 \mathrm{~cm}$
$(18.9 \mathrm{inch})$	$2 . .23 \mathrm{inch}$	$1 . .22$ inch
1600 mm	$2 . .180 \mathrm{~cm}$	$1 . .179 \mathrm{~cm}$
$(63 \mathrm{inch})$	$2 . .71 \mathrm{inch}$	$1 . .70 \mathrm{inch}$
4000 mm	$2 . .465 \mathrm{~cm}$	$1 . .464 \mathrm{~cm}$
$(157 \mathrm{inch})$	$2 . .183 \mathrm{inch}$	$1 . .182 \mathrm{inch}$
6400 mm	$2 . .740 \mathrm{~cm}$	$1 . .739 \mathrm{~cm}$
$(252$ inch $)$	$2 . .291$ inch	$1 . .290$ inch

Switching point function:
SP1, SP2 = switching points 1 or 2
RP1, RP2 = switch-back points 1 or 2
Window function.
FH1, FH2 = upper switch values 1 or 2 FL1, FL2 = lower switch values 1 or 2

* The increment for all devices is 1 cm or 1 inch.

Recording ranges

(for different objects):
The grey areas show the detection range for a very large reflector, e.g. a fluid surface, providing the sensor is ideally positioned. Outside the grey area, it is not possible to evaluate the ultrasonic reflections.

Operational scanning range:
280mm (11.02 inch)

Operational scanning range:
480mm (18.9 inch)

Operational scanning range:
1600 mm (63 inch)

Operational scanning range:
4000mm (157 inch)

Operational scanning range:
6400 mm (252 inch)

Additional functions:

- Switching mode of the switching outputs adjustable (switching point function or window function)
- Switching direction of the switching outputs adjustable (N/C or N/O function)
- Switch-on delay adjustable from 0 to 20 seconds
- Energy saving mode

Pin connections:

Pin	HNS 526-2	HNS 526-3
1	$+U_{B}$	$+U_{B}$
2	SP2	I/U
3	0 V	0 V
4	SP1	SP1

* The default for the unit of the HNS 526 is in mm . It can be changed to inch from the menu.
The unit inch is not shown in the display.

Model code:
HNS 52 6-X - XXXX - $\underline{000-F}$
Mechanical connection
$2=\mathrm{M} 30 \times 1.5$

Electrical connection

$6=$ Male M12×1, 4 pole
(connector not supplied)

Output
$2=2$ switching outputs
$3=1$ switching output and 1 analog output

Operational scanning range *

$0280=11.02$ inch
$0480=18.9$ inch
$1600=63$ inch
$4000=157$ inch
$6400=252$ inch
Modification number
$000=$ Standard
Design, front face of sensor
$F=$ Foil
*Note: The default for the unit of the HNS 526 is $\mathbf{~ m m}$. It can be changed to inch from the menu.

Accessories:

Appropriate accessories, such as electrical connectors, can be found in the Accessories brochure.

Dimensions:

Operational scanning range:

280 mm (11.02 inch)

480 mm (18.9 inch), 1600 mm (63 inch)

Operational scanning range:
4000 mm (157 inch)

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

Electronic Level Transmitter HNT 1000

Description:

The level transmitter HNT 1000 is a float-based sensor for highly accurate analog recording of fluid levels.
The sensor is available in probe lengths from 7.87 to 98.4 ". HYDAC offers the HNT 1000 in a pressure-resistant stainless steel housing for in-tank installation.
Depending on the application, a variety of different floats are available, e.g. stainless steel for aggressive media or plastic.
The output signals enable connection to all HYDAC ELECTRONIC GMBH measurement and control devices as well as connection to standard evaluation systems (e.g. PLC controls).

Special features:

- Probe lengths from 7.87 to 98.4 "
- Process connection:

G3/4 A threaded connection

- High degree of accuracy
- Very robust housing
- Highly resistant to shock and vibration
- Excellent EMC characteristics
- Various float variants available

Technical data:

Input data	
Sensor type	magnetostrictive
Measuring ranges	7.01", 8.19", 11.73", 13.31", 17.64", 25.90"
Probe length ${ }^{1)}$	9.84", 11.02", 14.57", 16.14", 20.47", 28.74"
Max. speed of change in fluid level	No orientation restrictions
Output data	
Output signal	$\begin{array}{ll} 4 . .20 \mathrm{~mA} & \text { load } \leq 500 \Omega \\ 0 . .10 \mathrm{~V} & \text { load } \geq 1 \mathrm{k} \Omega \\ \hline \end{array}$
Accuracy to DIN $16086{ }^{\text {2) }}$	$\leq \pm 1 \%$ FS
Non-linearity at max. setting to DIN 16086	$\leq \pm 1 \%$ FS
Repeatability	$\leq \pm 1 \%$ FS
Hysteresis	$\leq \pm 1 \%$ FS
Rise time	$\leq 30 \mathrm{~ms}$
Environmental conditions	
Max. tank pressure	43.5 psi (short-term $145 \mathrm{psi}, \mathrm{t}$ < 1 min)
Operating temperature range	$-40 . .+185^{\circ} \mathrm{F}$
Storage temperature range	$-40 . .+212^{\circ} \mathrm{F}$
Fluid temperature range	-40 .. $+248{ }^{\circ} \mathrm{F}$
(\in mark	EN 61000-6-1 / 2 / 3 / 4
Vibration resistance to	$7.5 \mathrm{~mm}(5 . .8 .2 \mathrm{~Hz})$
DIN EN 60068-2-6	2.0 g (8.2 .. 150 Hz)
Shock resistance to DIN EN 60068-2-27	20 g (11ms)
Protection class to IEC 60529	IP67
Other data	
Supply voltage (U_{B})	9 .. 36 V DC
Current consumption (without output)	$\leq 100 \mathrm{~mA}$
Residual ripple of supply voltage	$\leq 250 \mathrm{mV}$
Fluids	Hydraulic oils, cooling lubricants
Parts in contact with medium	Stainless steel (1.4301 / 1.4571)
Float	PP (polypropylene); 0.6 kg/dm ${ }^{3}$
Weight (dependent on probe and cable lengths)	~ 1000 g

Note: Reverse polarity protection of the supply voltage, excess voltage, override and short circuit protection are provided.
FS (Full Scale) = relative to complete measuring range
${ }^{1)}$ Other probe lengths on request
2) Specified for calm, non-turbulent fluid

Pin connections:

M12x1, 4 pole

Pin	HNT 1226
1	$+U_{B}$
2	n.c.
3	0 V
4	Signal

M12x1, 5 pole

Pin	HNT 1228
1	$+U_{B}$
2	n.c.
3	0 V
4	Signal
5	n.c.

Model code:

```
                                    HNT 122 X - X - XXXX - \(\underline{000}\)
```


Temperature sensor

```
2 = Without temperature sensor
Mechanical connection
2 = G 3/4 A DIN 3852 (male)
Electrical connection
1 = Flying lead, 2 m
\(6=\) Male M12×1, 4 pole
\(8=\) Male M12x1, 5 pole
Output
B = \(0 . .10 \mathrm{~V}, 3\) conductor
\(\mathrm{C}=4 . .20 \mathrm{~mA}, 3\) conductor
Probe length (physical) in mm
0250 = 9.84"; 0280 = 11.02"; 0370 = 14.57"; 0410 = 16.14";
0520 = 20.47"; 0730 = 28.74";
```


Modification number

000 = Standard

Accessories:

Appropriate accessories, such as electrical female connectors, can be found in the Accessories section of the Electronics brochure.

Dimensions:

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications and operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

HYDAC ELECTRONICS

90 Southland Dr. Bethlehem, PA 18017
Telephone +1 (610) 266-0100
E-mail: electronics@hydacusa.com
Website: www.hydacusa.com

